
© 2024, Amazon Web Services, Inc. or its affiliates.

How does the ideal CI/CD
pipeline look?

Viktor Vedmich | AWS
Snr Developer Advocate

Agenda

• Release Lifecycle
• Branching Strategy
• CI/CD Journey
• Quality Gates
• Metrics
• Final Blueprint

© 2024, Amazon Web Services, Inc. or its affiliates.

Overview Release
Lifecycle

Release lifecycle

Source Build Test Production

Release lifecycle

Source Build Test Production

© 2024, Amazon Web Services, Inc. or its affiliates.

Branching Strategy step 0
for CI/CD

GitFlow created by
Vincent Driessen
2010!

GitHub Flow

1. Anything in the main branch is

deployable

2. Short lived branches

3. Code review

4. Open a pull request at any time

5. Merge only after pull request review

Main

Feature

Bugfix

Branching strategy:
Trunk-Based Development

• Commit in trunk at least once a day

• Trunk is always is a releasable state

• Hide unfinished code with feature toggle

• Refactor with branch by abstraction

Trunk

Commit

Commit

Release 1.1

Cherrypick

Release 1.2

Cherrypick

CI/CD blueprint

Version
Control

CODE

Quality gateway

Code Review

Release lifecycle

Source Build Test Production

1. Automatically kick off a new build when new code is checked in

2. Build and test code in a consistent, repeatable environment

3. Continually have an artifact ready for deployment

4. Continually close feedback loop when build fails

Continuous Integration goals

Continuous Integration

Continuous Integration

CI / Build Server

Builds / Status
Notifications

Artefact
Repository

CI
Dashboard

Version
Control

CODE

Сode
Analysis

Code Review

Build

Artifacts

Unit Test

Quality gateway

QG

Semantic Versioning 2.0.0

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible
manner, and

3. PATCH version when you make backwards compatible bug fixes.

PATCH version can be your hash of the commit in Git.

Release lifecycle

Source Build Test Production

Approve

Continuous Delivery

Continuous Integration +

• Automated pipeline that handles deployment activities

• Each change is a release candidate

• Automated deployment pipeline promote build artifact

• Production deployments triggered manually

Continuous Delivery

CI / Build Server

Builds / Status
Notifications

Artefact
Repository

CI
Dashboard

DEV

Version
Control

CODE

Сode
Analysis

Code Review

Integration
Tests

Build

Artifacts

Unit Test

Infrastructure
provisioning

Acceptance
Tests

Continuous
Operations

(Monitoring)

Quality gateway

QG

Quality
gateway

Continuous Delivery

CI / Build Server

Builds / Status
Notifications

Artefact
Repository

CI
Dashboard

DEV

Version
Control

RELEASE
approval
gateway

CODE

Сode
Analysis

Code Review

QA UAT

Synthetic
Tests

Performance
Tests

Integration
Tests

Build

Artifacts

Unit Test

Infrastructure
provisioning

Acceptance
Tests

Continuous
Operations

(Monitoring)

Quality gateway

QG

Quality
gateway

Q
G

Q
G

Release lifecycle

Source Build Test Production

Approve

Continuous Deployment

Continuous deployment

1. Automatically deploy new changes to staging environments for

testing

2. Deploy to production safely without impacting customers

3. Deliver to customers faster: Increase deployment frequency and

reduce change lead time and change failure rate

© 2024, Amazon Web Services, Inc. or its affiliates.

Deployment Strategies

Deployment Strategies

Strategy

Zero
Downtime

Real traffic
testing

Targeted
users Cloud cost Rollback

duration

Negative
impact on

user

Complecity
of setup

RECREATE
roll out new application
code to an existing
fleet of servers

ROLLING
version B is slowly
rolled out and
replacing version A

BLUE/GREEN
version B is released
alongside version A,
then the traffic is
switched to version B

CANARY
version B is released to
a subset of users, then
proceed to full rollout

A/B TESTING
version B is released to
a subset of users under
specific condition

Deployment Strategies: Recreate

Six Strategies for Application Deployment

https://thenewstack.io/deployment-strategies/

Deployment Strategies: Rolling

Six Strategies for Application Deployment

https://thenewstack.io/deployment-strategies/

Deployment Strategies: Blue/Green

Six Strategies for Application Deployment

https://thenewstack.io/deployment-strategies/

Deployment Strategies: Canary

Six Strategies for Application Deployment

https://thenewstack.io/deployment-strategies/

Deployment Strategies: A/B testing

Six Strategies for Application Deployment

https://thenewstack.io/deployment-strategies/

Deployment Strategies

Strategy

Zero
Downtime

Real traffic
testing

Targeted
users Cloud cost Rollback

duration

Negative
impact on

user

Complecity
of setup

RECREATE
roll out new application
code to an existing
fleet of servers

ROLLING
version B is slowly
rolled out and
replacing version A

BLUE/GREEN
version B is released
alongside version A,
then the traffic is
switched to version B

CANARY
version B is released to
a subset of users, then
proceed to full rollout

A/B TESTING
version B is released to
a subset of users under
specific condition

© 2024, Amazon Web Services, Inc. or its affiliates.

How to measure your
CI/CD process

DORA metrics

DevOps Research and Assessment (DORA) Metrics

01 02 03 04
Change Failure Rate
(CFR)
The percentage of
deployments causing a failure
in production

Time to Restore
Service (TRS)
How long it takes an
organization to recover from a
failure in production

Deployment
Frequency (DF)

How often an organization
successfully releases to
production

Lead Time for
Changes (LT)

The amount of time it takes a
commit to get into production

Effects of CI/CD

Source: 2021 DORA State of DevOps Report

Deployment frequency Weekly–monthly On-demand

Change lead time One–six months Less then one
hour

Change failure rate 16–30% 0–15%

26% of
software

teams

Continuous Integration Metrics (KPIs)

Acronym Metrics Description Process objectives under control Recommended
value

BFP Build Failed
Percentage

The percent of builds failed due to
infrastructure reason per day vs all
builds

Infrastructure problems and progress in
resolving them 5-10%

T2F Time2Feedback Average duration of PR build.
Fluctuations of feedback time over period

<30 min

PUK Percentage of
Unknown to Known

The percent of unknown errors to
known errors New infra problems (e.g., git updates) >90%

MBSQ Maximum
BuildServer Queue

Maximal BuildServer queue on
working hours

Quality/performance/insufficiency of build
process <5

AQT Average Queue Time Avg build wait time in Jenkins queue Quality/performance/insufficiency of build
process <10m

PRC Pull Request Count Calculate count of pull (or merge)
request per day

If all PR created were reviewed/built in
measured period.

© 2024, Amazon Web Services, Inc. or its affiliates.

CI/CD Blueprint

CI/CD blueprint

CI / Build Server

Builds / Status
Notifications

Artefact
Repository

CI
Dashboard

DEV

Version
Control

RELEASE
approval
gateway

Release
Deployment

CODE

FINISH

Сode
Analysis

Code Review

QA UAT PRODUCTION
ENVIRONMENT

Synthetic
Tests

Performance
Tests

Integration
Tests

Build

Artifacts

Unit Test

Infrastructure
provisioning

Acceptance
Tests

Continuous
Operations

(Monitoring)

Quality gateway

QG

Quality
gateway

Q
G

Q
G

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates.

Viktor Vedmich

